supressão de espaços - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

supressão de espaços - translation to ρωσικά

ESPAÇO COM PRODUTO INTERNO QUE É METRICAMENTE COMPLETO; UM ESPAÇO DE BANACH CUJA NORMA INDUZ UM PRODUTO INTERNO (RESPEITA A IDENTIDADE DO PARALELOGRAMO)
Espaços de Hilbert

supressão de espaços      
- (полигр.) блокировка подачи бумаги (для печатания строки);
- блокировка интервалов
supressão de espaços      
полигр. блокировка подачи бумаги (для печатания строки), блокировка интервалов
separabilidade         
ESPAÇO TOPOLÓGICO EM QUE PONTOS DISTINTOS TÊM VIZINHANÇAS DISJUNTAS
Espaço separado; Espaços de Hausdorff; Separabilidade; Espaço de hausdorff; Espaços de hausdorff; Hausdorff (topologia)
{f}
- сепарационная способность; способность к разделению (напр., смесей)

Ορισμός

ДЕ-ЮРЕ
[дэ, рэ], нареч., юр.
Юридически, формально (в отличие от де-факто).

Βικιπαίδεια

Espaço de Hilbert

Na matemática, um espaço de Hilbert é uma generalização do espaço euclidiano que não precisa estar restrita a um número finito de dimensões.

É um espaço vetorial dotado de produto interno, ou seja, com noções de distância e ângulos. Esse espaço obedece uma relação de completude, que garante que os limites existem quando esperados, o que permite e facilita diversas definições da Análise. Os espaços de Hilbert permitem que, de certa maneira, noções intuitivas sejam aplicadas em espaços funcionais. Por exemplo, com eles podemos generalizar os conceitos de séries de Fourier em termos de polinômios ortogonais. Os espaços de Hilbert são de importância crucial para a Mecânica Quântica.

Espaços de Hilbert foram criados por David Hilbert, que os estudou no contexto de equações integrais. John von Neumann criou a nomenclatura "der abstrakte Hilbertsche Raum" em seu famoso trabalho em operadores Hermitianos não limitados, publicado em 1929. Talvez, John Von Neumann seja o matemático que melhor reconheceu a importância desse trabalho original.

Os elementos de espaço de Hilbert abstratos são chamados vetores. Em aplicações, eles são tipicamente sequências de números complexos ou funções. Em Mecânica Quântica, por exemplo, um sistema físico é descrito por um espaço de Hilbert complexo que contém os vetores de estado, que contém todas as informações do sistema e complexidades multifocais.